Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Water use efficiency (WUE) is a critical ecosystem function and a key indicator of vegetation responses to drought, yet its temporal trajectories and underlying drivers during drought propagation remain insufficiently understood. Here, we examined the trajectories, interdependencies and drivers of multidimensional WUE metrics and their components (gross primary production (GPP), evapotranspiration, transpiration (T), and canopy conductance (Gc)) using a conceptual drought propagation framework. We found that even though the carbon assimilation efficiency per stomata increases during drought, the canopy‐level WUE (represented by transpiration WUE (TWUE)) declines, indicating that stomatal regulation operates primarily at the leaf level and cannot offset the drought‐induced reduction in WUE at the canopy scale. A stronger dependence on T and TWUE indicates that the water–carbon trade‐off relationship of vegetation more inclines toward water transport than carbon assimilation. Gc fails to prevent the sharp decline in GPP during drought and has limited capacity to suppress T, as reflected by the reduction magnitude and the threshold (the turning point at which a component shifts from a normal to drought‐responsive state). The primary drivers of the water–carbon relationship under drought propagation include vapor pressure deficit and hydraulic traits. Among plant functional types, grasslands show the strongest water–carbon fluxes in response to drought, whereas evergreen broadleaf forests exhibit the weakest response. These findings refine our comprehensive understanding of multidimensional ecosystem functional dynamics under drought propagation and enlighten how the physiological response of vegetation to drought affects the carbon and water cycles.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Abstract Momentum and mass exchanges between the atmosphere and forests situated on complex terrain continue to draw significant research attention primarily because of their significance to a plethora of applications. In this paper, we investigated flows behavior on the leeward side of a two‐dimensional forested ridge under neutrally stratified conditions using large‐eddy simulations (LESs). The goal is to understand how variations in leaf area index (LAI), vertical canopy foliage distributions, and forest edge positions affect mean/turbulent flow statistics, momentum fluxes, and onset of recirculation patterns. Although pressure perturbations are dominated by the hill shape, it is demonstrated here that changes in canopy foliage distribution modulate intensities and patterns of the leeward adverse pressure gradients. Such changes in the adverse pressure gradients alter the mean velocity streamlines including the patterns and magnitudes of the leeward downward mean vertical velocity and the velocity variances and momentum flux in the wake region. While a downwind recirculation zone develops in all cases, the details regarding the incipient location and recirculation zone size vary including positions of the separation and reattachment points. Furthermore, changes in the strength and depth of the zone occur due to canopy‐induced changes in adverse pressure gradients, advection, and canopy drag. Because the recirculation zone impacts the local mean advective terms in momentum and scalar exchanges, the simulations here indicate that canopy morphology‐induced changes in the leeward flows have significant implications to both measurements and models of biosphere‐atmosphere exchange over complex terrain.more » « less
An official website of the United States government
